Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256051

RESUMO

Drought stress can seriously affect the yield and quality of wheat (Triticum aestivum). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, TaHsfC3-4, based on our previous omics data and analyzed its biological function in transgenic plants. TaHsfC3-4 encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that TaHsfC3-4 was constitutively expressed in many tissues of wheat and was induced during seed maturation. TaHsfC3-4 could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of TaHsfC3-4 in Arabidopsis thaliana pyr1pyl1pyl2pyl4 (pyr1pyl124) quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic Arabidopsis TaHsfA2-11 overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.


Assuntos
Arabidopsis , Resistência à Seca , Regulação para Cima , Triticum/genética , Fatores de Transcrição de Choque Térmico , Ácido Abscísico/farmacologia , Arabidopsis/genética , Interleucina-6
2.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674529

RESUMO

High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.


Assuntos
Arabidopsis , Termotolerância , Termotolerância/genética , Triticum/metabolismo , Processamento Alternativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resposta ao Choque Térmico/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta
3.
Ann Transl Med ; 10(3): 150, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284535

RESUMO

Background: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a frequently diagnosed chronic disease that has been widely recognized as a significant economic strain on society. Recently, concern about the rising prevalence of eosinophilia in CRSwNP has attracted research interest. A comprehensive understanding of the characteristics and disease burden of CRSwNP patients may contribute to improved management of these patients. Methods: We conducted a multi-center retrospective observational study based on real-world data. Patients were filtered into three groups: CRSwNP overall group, CRSwNP surgical group, and CRSwNP patients who had a relapse after surgeries. Furthermore, we used laboratory test results of blood eosinophil percentage (EOS%) as an indicator of eosinophilia. The comorbidities and medications of patients in the high and low EOS% groups were compared. Disease burden was measured from two aspects: direct costs and loss of working days. Results: A total of 1,724 CRSwNP patients were eligible, 527 of which were filtered into the surgical groups. Only 16 patients in this study were found to have a relapse. The mean ages of the CRSwNP non-surgical, CRSwNP surgical, and CRSwNP relapse groups were 46, 47, and 52.5 years old, respectively. Most patients sought treatment in the otolaryngology department. Among all three groups, the most prevalent comorbidities were allergic rhinitis and asthma. The most prescribed drug was intranasal/oral corticosteroids. The direct costs per person/year for the non-surgical group, surgical group, and relapse group were ¥188.60, ¥15,190.00, and ¥14,160.00, respectively. The loss of working days per person/year for the non-surgical group, surgical group, and relapse group was 10.41, 24.40, and 21.65 days, respectively. Conclusions: CRSwNP is a disease of middle age. It is frequently associated with asthma and allergic rhinitis. Eosinophilia was found to have a considerate influence on patients' treatment patterns. Based on available data, we noted that patients in the high EOS% group were more likely to have asthma and allergic rhinitis. Intranasal/oral corticosteroids were the most frequently used drug for patients with CRSwNP, while a smaller proportion of patients in the high EOS% group used intranasal/oral corticosteroids. The disease burden of CRSwNP is posing significant challenges to both patients and society.

4.
Front Genet ; 12: 663557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912219

RESUMO

Drought is a major threat to global wheat production. In this study, an association panel containing 200 Chinese wheat germplasms was used for genome-wide association studies (GWASs) of genetic loci associated with eight root and seedling biomass traits under normal water and osmotic stress conditions. The following traits were investigated in wheat seedlings at the four-leaf stage: root length (RL), root number (RN), root fresh weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot dry weight (SDW), total fresh weight (TFW), and total dry weight (TDW). A total of 323 and 286 SNPs were detected under two water environments, respectively. Some of these SNPs were near known loci for root traits. Eleven SNPs on chromosomes 1B, 2B, 4B, and 2D had pleiotropic effects on multiple traits under different water conditions. Further analysis indicated that several genes located inside the 4 Mb LD block on each side of these 11 SNPs were known to be associated with plant growth and development and thus may be candidate genes for these loci. Results from this study increased our understanding of the genetic architecture of root and seedling biomass traits under different water conditions and will facilitate the development of varieties with better drought tolerance.

5.
Front Plant Sci ; 11: 677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582239

RESUMO

From the perspective of wheat yield improvement, the coleoptile is vital for successful crop establishment, and long coleoptile lengths (CLs) are preferred in wheat-growing regions where deep planting is practiced. To determine the genetic basis of CL, we performed a genome-wide association study on a set of 707 Chinese wheat landraces using 18,594 single-nucleotide polymorphisms and 38,678 diversity array technology sequencing markers. We accordingly detected a total of 29 significant markers [-log10 (P) > 4.76] distributed on chromosomes 2B, 2D, 3A, 4A, 5A, 6A, 6B, 6D, and 7B. Based on linkage disequilibrium decay distance, we identified a total of 17 quantitative trait loci associated with CL, among which QCl.sicau-6B.2, located at 508.17-509.26 Mb on chromosome 6B, was recognized as a novel major locus. We subsequently developed a high-resolution melt marker for QCl.sicau-6B.2, which was validated in an F 2 : 3 population. Our findings provide important insights into the genetic mechanisms underlying coleoptile growth and could be applied to marker-assisted wheat selection.

6.
Sci Rep ; 10(1): 8073, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415117

RESUMO

Heat shock transcription factor (Hsf) plays a transcriptional regulatory role in plants during heat stress and other abiotic stresses. 31 non-redundant ZmHsf genes from maize were identified and clustered in the reference genome sequenced by Single Molecule Real Time (SMRT). The amino acid length, chromosome location, and presence of functional domains and motifs of all ZmHsfs sequences were analyzed and determined. Phylogenetics and collinearity analyses reveal gene duplication events in Hsf family and collinearity blocks shared by maize, rice and sorghum. The results of RNA-Seq analysis of anthesis and post-anthesis periods in maize show different expression patterns of ZmHsf family members. Specially, ZmHsf26 of A2 subclass and ZmHsf23 of A6 subclass were distinctly up-regulated after heat shock (HS) at post-anthesis stage. Nanopore transcriptome sequencing of maize seedlings showed that alternative splicing (AS) events occur in ZmHsf04 and ZmHsf17 which belong to subclass A2 after heat shock. Through sequence alignment, semi-quantitative and quantitative RT-PCR, we found that intron retention events occur in response to heat shock, and newly splice isoforms, ZmHsf04-II and ZmHsf17-II, were transcribed. Both new isoforms contain several premature termination codons in their introns which may lead to early termination of translation. The ZmHsf04 expression was highly increased than that of ZmHsf17, and the up-regulation of ZmHsf04-I transcription level were significantly higher than that of ZmHsf04-II after HS.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Transcriptoma , Zea mays/genética , Perfilação da Expressão Gênica , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento
7.
J Plant Physiol ; 246-247: 153135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32114414

RESUMO

Heat shock transcription factors (Hsfs) play an important role in regulating heat stress response in plants. Our previous study found that there were 82 non-redundant Hsfs in wheat, 18 of which belonged to subclass A2. In this study, we cloned an A2 member, TaHsfA2-1, which encoded a protein of 346 amino acid residues in wheat. The fusion protein TaHsfA2-1-GFP was localized in the nucleus under normal growth conditions. TaHsfA2-1 was expressed in nearly all the measured tissues, most highly in mature leaves. The expression level of TaHsfA2-1 can be enhanced by heat stress, PEG stress, and signal molecules such as H2O2 and SA. Yeast cells transformed with TaHsfA2-1 improved thermotolerance compared to those with the empty vector. TaHsfA2-1-overexpressing Arabidopsis displayed a better growth state with more green leaves than wild-type seedlings after heat stress. Accordingly, the chlorophyll content and survival rate in the transgenic lines were higher than in the wild type, and relative conductivity in the transgenic lines was lower than in the wild type. Further research found that TaHsfA2-1-overexpressing Arabidopsis up-regulated the expression of some heat shock protein genes (Hsps) compared to wild type after heat stress. These results suggested that TaHsfA2-1 is a new gene that improves thermotolerance in plants by mediating the expression of Hsps. A functional gene was provided for molecular breeding in the subsequent research.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Termotolerância/genética , Triticum/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plântula/genética , Plântula/fisiologia , Alinhamento de Sequência , Triticum/genética
8.
Theor Appl Genet ; 133(7): 2063-2073, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32172298

RESUMO

KEY MESSAGE: Genome-wide association study (GWAS) on 358 Chinese wheat germplasms and validation in a biparental population identified a novel significant genomic region on 5DL for FCR resistance. Fusarium crown rot (FCR) is a chronic and severe disease in many dryland wheat-producing areas worldwide. In the last few years, the incidence and severity of FCR progressively increased in China, and the disease has currently become a new threat to local wheat crops. Here, we report a genome-wide association study (GWAS) on a set of 358 Chinese germplasms with the wheat 55 K SNP array. A total of 104 SNPs on chromosomes 1BS, 1DS, 2AL, 5AL, 5DS, 5DL, 6BS and 7BL were significantly associated with seedling resistance to FCR in the association panel. Of these SNPs, a novel 13.78 Mb region targeted by five SNPs on chromosome arm 5DL was continually detected in all three trials. The effects of this region on FCR resistance was confirmed in biparental population. qRT-PCR showed that within this 5DL region, several genes encoding TIR-NBS-LRR proteins and proteins related to mycotoxins deoxynivalenol (DON) detoxification increased rapidly in the disease-resistant variety 04 Zhong 36 than the susceptible variety Xinmai 26 after inoculation. Our study provides new insights into gene discovery and creation of new cultivars with desirable alleles for improving FCR resistance in wheat.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Genoma Fúngico , Doenças das Plantas/genética , Triticum/genética , Alelos , China , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Tricotecenos , Triticum/microbiologia
9.
BMC Genomics ; 20(1): 257, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935363

RESUMO

BACKGROUND: Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world's staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Thus, multifunctional Hsfs may be potentially targets in generating novel strains that have the ability to survive environments that feature a combination of stresses. RESULT: In this study, using the released genome sequence of wheat and the novel Hsf protein HMM (Hidden Markov Model) model constructed with the Hsf protein sequence of model monocot (Oryza sativa) and dicot (Arabidopsis thaliana) plants, genome-wide TaHsfs identification was performed. Eighty-two non-redundant and full-length TaHsfs were randomly located on 21 chromosomes. The structural characteristics and phylogenetic analysis with Arabidopsis thaliana, Oryza sativa and Zea mays were used to classify these genes into three major classes and further into 13 subclasses. A novel subclass, TaHsfC3 was found which had not been documented in wheat or other plants, and did not show any orthologous genes in A. thaliana, O. sativa, or Z. mays Hsf families. The observation of a high proportion of homeologous TaHsf gene groups suggests that the allopolyploid process, which occurred after the fusion of genomes, contributed to the expansion of the TaHsf family. Furthermore, TaHsfs expression profiling by RNA-seq revealed that the TaHsfs could be responsive not only to abiotic stresses but also to phytohormones. Additionally, the TaHsf family genes exhibited class-, subclass- and organ-specific expression patterns in response to various treatments. CONCLUSIONS: A comprehensive analysis of Hsf genes was performed in wheat, which is useful for better understanding one of the most complex Hsf gene families. Variations in the expression patterns under different abiotic stress and phytohormone treatments provide clues for further analysis of the TaHsfs functions and corresponding signal transduction pathways in wheat.


Assuntos
Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Estresse Fisiológico , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Loci Gênicos , Fatores de Transcrição de Choque Térmico/classificação , Fatores de Transcrição de Choque Térmico/metabolismo , Oryza/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...